1.

MATH 245 S25, Exam 2 Solutions

Carefully define the following terms: well-ordered by <, big O.

We say that a set of numbers S is well-ordered by some order < if every nonempty subset of
S has a minimal element in the < ordering. Given two sequences ay, b,, we say that a, is big
O of b, if AM € R,Ing € N,Vn > ny, |a,| < M|by|.

Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive

Existence Proof Theorem.

The proof by contradiction theorem says that (for any propositions p, q) to prove p — ¢, we
can prove pA—q = F. The nonconstructive existence proof theorem says that (for any domain
D and any predicate P(x)) to prove 3z € D, P(z) we can prove Vo € D, ~P(x) = F.

Solve the recurrence that has initial conditions ag = 0, a; = 2 and relation a,, = —2a,_1+2a,_2
(n>2).

This recurrence has characteristic polynomial 72 + 2r — 2, which has roots 11 = —1 + /3
and 7y = —1 — /3 (we can use the quadratic formula to find these). Since these are dis-

tinct, the general solution is a, = Ar} + Bry. We now apply the initial conditions to get
0O=ay=A+Bry=A+Band2=a = Ar% + Bry = Ary + Bry. Solving the system

{0=A+B,2= Ar; + Bra} we get A= = TQ = 2\2[ = 7 and B=—-A = \_/—:1): This gives
specific solution a,, = 7( 1+3)" + ( 1 — v/3)", which may be simplified if desired as

a, = <—1+“3>"\;§(—1—ﬁ> . CAUTION: (—1 +/3)" — (=1 — V/3)" cannot be simplified!

Let = € R. Use cases to prove that ||z + 1| — [z — 1|| < 2.
We split into three cases, based on x.

Casex > 1: |[z+1| =2+1and [z—1| = 2—1,s0 ||[z+1]|—|z—1|| = [(z+1)—(z—1)| = |2| < 2.
Case 2 < —1: Now |z 4+ 1| = —(z+1) and |z — 1] = —(z — 1), so [[z + 1| — |z — 1|| =
|—(z+ D)+ (x—-1)=|-2=2<2.

Case -1 <z < 1: Now]x+1]:a;+1and|x—1]:—(x—l),son—i—H—\x—lH:

N

|(z+1) 4+ (x — 1)| = |22| = 2|z|. Since —1 <z <1 in this case, we have |z| < 1, so 2|z| <
In all three cases, ||z + 1] — [z — 1]| < 2.
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Prove that for all n € Ny, we have F,,y1(F,, + Fp12) =
denotes the Fibonacci numbers. i
Shifted induction (starting with 0). Base case n = 0: F, = 0,F,11 = 1,F,42 = 1 so
Frop1(Fo + Frp2) =1(0+1) = 1, while Y0 F2 + F2, = F2 + F2+1 —02412-1.
Inductive case: Let n € Ny and assume that Fy 1 (F, + Fpy2) = > 0F2 + F Z+1 We add
F2 +F?2, , tobothsides. The RHS becomes F?2, ,+F, +2+Z? o FP4F2 =M F24+F2 .
The LHS becomes Fpi1(F, 4+ Foy2) + F2 0 + F2 o = Fop1(Fy + Fog1) 4+ Fopo(Fogr +
Frio) = Fop1Fnio + FroioFnys = Foio(Foy1 + Fuys). Putting it all together we get
Fn+2(Fn+1 + Fn+3) = Z?Iol F2 Fz2+1

—|—F+1 Here F,

.M:

I
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Let a, = 3n% + 7. Prove or disprove that a, = ©(n?).

The statement is false, because a,, # Q(n?), which we now need to prove. Let M € R, ng € N.
Choose n = max(10[M] 4 1,np). This ensures that n € Ny, n > ng, and also that
n>10M > M|3—|—n—72]. Multiplying by (positive) n? we get n3 > M|3n?+7|, so M|a,| < |n3|.



7. Suppose that an algorithm has runtime specified by recurrence relation T, = 57,5 + n?.

10.

Determine what, if anything, the Master Theorem tells us.

We have a = 5,b = 2, and since n? = O(n?), k = 2. We set d = log, a = log, 5, and note that
2 =1logy4 <logy b < logy8 =3,s02 < d< 3. Since k < d, we are in the “small ¢,” case of
the Master Theorem, which tells us that a, = O(n?) = ©(n'°825).

For problems 8-10, we consider a new function, “surround”. For z € R, we define “the surround

of z”, writing [#], as a natural number satisfying 2 —lz] <|z| < 2 +[z].

Prove uniqueness, i.e. Vz € R ![z]e N, 2 - <lz| < 2 + =]
Let « € R, and suppose [2],[y]e N with ] — < |z| < [=F + and 2 — <
lz| < 2 +[¥]. We recombine to get ] — < 2 +[y]

Hence [z ]=]y ]

NOTE: This problem is about proof structure, not algebra. The green portion of the solution
was only worth 1 point. Here is an alternate version of the green portion, found by a student:
Rewrite the inequality as [z — 2 < [#]+[y], factor as (] +[y))([z] - [y]) < [=] +[¥]
Now, since [£] + [y]> 0, we cancel to get [2] — < 1. By Thm 1.12(a), [z] — <0, so
S. We recombine the other way, and similar algebra gets us S.

Prove existence, i.e. Vo € R3[Z|e N, [2] —[z] < |z| < [z +[z]

Let x € R. We use minimum element induction, defining S = {m € Z : m > 1 A |z| <
m? +m}={m € N: |z| < m? + m}. It is a bit tricky to prove this is nonempty — we need to
find some specific integer in S. One way is taking m = [|z|] + 1. Hence |z| < m < m + m?,
and m > 1,som € S. S has a lower bound, namely 1. Induction gives us a minimum n € S,
so |z| <n?+n,and alson —1 ¢ S, so either |z| > (n—1)2+(n—1)=n?—n,orn—1%1.
If n —1 # 1, then n = 0 and we also have |x| > 0 = 0> — 0 = n? — n. Combining, in both
cases we get the desired double inequality n? — n < |z| < n? + n.

Prove or disprove: Vo € R Vk € N, = +k.

The statement is false, and requires a counterexample. Many are possible, here is just one.
Take z = 1 and k = 10, we see that [z ]= 1 since 12— 1 < |z| < 1241. We also have : 3

since 32 — 3 < |1 + 10| < 32 + 3. However, : 3# 11 =[x]+10 =[] +k.



