
MATH 245 S25, Exam 2 Solutions

1. Carefully define the following terms: well-ordered by <, big O.

We say that a set of numbers S is well-ordered by some order < if every nonempty subset of
S has a minimal element in the < ordering. Given two sequences an, bn, we say that an is big
O of bn if ∃M ∈ R, ∃n0 ∈ N,∀n ≥ n0, |an| ≤M |bn|.

2. Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive
Existence Proof Theorem.

The proof by contradiction theorem says that (for any propositions p, q) to prove p → q, we
can prove p∧¬q ≡ F . The nonconstructive existence proof theorem says that (for any domain
D and any predicate P (x)) to prove ∃x ∈ D, P (x) we can prove ∀x ∈ D, ¬P (x) ≡ F .

3. Solve the recurrence that has initial conditions a0 = 0, a1 = 2 and relation an = −2an−1+2an−2
(n ≥ 2).

This recurrence has characteristic polynomial r2 + 2r − 2, which has roots r1 = −1 +
√

3
and r2 = −1 −

√
3 (we can use the quadratic formula to find these). Since these are dis-

tinct, the general solution is an = Arn1 + Brn2 . We now apply the initial conditions to get
0 = a0 = Ar01 + Br02 = A + B and 2 = a1 = Ar11 + Br12 = Ar1 + Br2. Solving the system
{0 = A + B, 2 = Ar1 + Br2} we get A = 2

r1−r2 = 2
2
√
3

= 1√
3

and B = −A = −1√
3
. This gives

specific solution an = 1√
3
(−1 +

√
3)n + −1√

3
(−1−

√
3)n, which may be simplified if desired as

an = (−1+
√
3)n−(−1−

√
3)n√

3
. CAUTION: (−1 +

√
3)n − (−1−

√
3)n cannot be simplified!

4. Let x ∈ R. Use cases to prove that
∣∣|x + 1| − |x− 1|

∣∣ ≤ 2.

We split into three cases, based on x.
Case x ≥ 1: |x+1| = x+1 and |x−1| = x−1, so

∣∣|x+1|−|x−1|
∣∣ = |(x+1)−(x−1)| = |2| ≤ 2.

Case x ≤ −1: Now |x + 1| = −(x + 1) and |x − 1| = −(x − 1), so
∣∣|x + 1| − |x − 1|

∣∣ =
| − (x + 1) + (x− 1)| = | − 2| = 2 ≤ 2.
Case −1 ≤ x ≤ 1: Now |x + 1| = x + 1 and |x − 1| = −(x − 1), so

∣∣|x + 1| − |x − 1|
∣∣ =

|(x + 1) + (x− 1)| = |2x| = 2|x|. Since −1 ≤ x ≤ 1 in this case, we have |x| ≤ 1, so 2|x| ≤ 2.

In all three cases,
∣∣|x + 1| − |x− 1|

∣∣ ≤ 2.

5. Prove that for all n ∈ N0, we have Fn+1(Fn + Fn+2) =
n∑

i=0

F 2
i + F 2

i+1. Here Fn

denotes the Fibonacci numbers.
Shifted induction (starting with 0). Base case n = 0: Fn = 0, Fn+1 = 1, Fn+2 = 1 so
Fn+1(Fn + Fn+2) = 1(0 + 1) = 1, while

∑n
i=0 F

2
i + F 2

i+1 = F 2
n + F 2

n+1 = 02 + 12 = 1.
Inductive case: Let n ∈ N0 and assume that Fn+1(Fn + Fn+2) =

∑n
i=0 F

2
i + F 2

i+1. We add

F 2
n+1+F 2

n+2 to both sides. The RHS becomes F 2
n+1+F 2

n+2+
∑n

i=0 F
2
i +F 2

i+1 =
∑n+1

i=0 F 2
i +F 2

i+1.
The LHS becomes Fn+1(Fn + Fn+2) + F 2

n+1 + F 2
n+2 = Fn+1(Fn + Fn+1) + Fn+2(Fn+1 +

Fn+2) = Fn+1Fn+2 + Fn+2Fn+3 = Fn+2(Fn+1 + Fn+3). Putting it all together we get
Fn+2(Fn+1 + Fn+3) =

∑n+1
i=0 F 2

i + F 2
i+1.

6. Let an = 3n2 + 7. Prove or disprove that an = Θ(n3).

The statement is false, because an 6= Ω(n3), which we now need to prove. Let M ∈ R, n0 ∈ N0.
Choose n = max(10dMe + 1, n0). This ensures that n ∈ N0, n ≥ n0, and also that
n > 10M ≥M |3+ 7

n2 |. Multiplying by (positive) n2 we get n3 > M |3n2+7|, so M |an| < |n3|.



7. Suppose that an algorithm has runtime specified by recurrence relation Tn = 5Tn/2 + n2.
Determine what, if anything, the Master Theorem tells us.

We have a = 5, b = 2, and since n2 = Θ(n2), k = 2. We set d = logb a = log2 5, and note that
2 = log2 4 < log2 5 < log2 8 = 3, so 2 < d < 3. Since k < d, we are in the “small cn” case of
the Master Theorem, which tells us that an = Θ(nd) = Θ(nlog2 5).

For problems 8-10, we consider a new function, “surround”. For x ∈ R, we define “the surround
of x”, writing x , as a natural number satisfying x 2 − x ≤ |x| < x 2

+ x .

8. Prove uniqueness, i.e. ∀x ∈ R ! x ∈ N, x 2 − x ≤ |x| < x 2
+ x .

Let x ∈ R, and suppose x , y ∈ N with x 2 − x ≤ |x| < x 2
+ x and y 2 − y ≤

|x| < y 2
+ y . We recombine to get x 2 − x < y 2

+ y . Completing the square we get

( x −0.5)2 − 0.25 < ( y +0.5)2 − 0.25. Adding 0.25 and taking square roots (the positive

square root since x , y ≥ 1) we get x −0.5 < y +0.5, so x < y +1. Applying Theorem

1.12(a) (“a theorem from the book”) we get x ≤ y . We can recombine the other way to get

y 2 − y < x 2
+ x , and similar algebra gets us y ≤ x . Hence x = y .

NOTE: This problem is about proof structure, not algebra. The green portion of the solution
was only worth 1 point. Here is an alternate version of the green portion, found by a student:
Rewrite the inequality as x 2 − y 2

< x + y , factor as ( x + y )( x − y )< x + y .

Now, since x + y > 0, we cancel to get x − y < 1. By Thm 1.12(a), x − y ≤ 0, so

x ≤ y . We recombine the other way, and similar algebra gets us y ≤ x .

9. Prove existence, i.e. ∀x ∈ R ∃ x ∈ N, x 2 − x ≤ |x| < x 2
+ x .

Let x ∈ R. We use minimum element induction, defining S = {m ∈ Z : m ≥ 1 ∧ |x| <
m2 + m}={m ∈ N : |x| < m2 + m}. It is a bit tricky to prove this is nonempty – we need to
find some specific integer in S. One way is taking m = d|x|e+ 1. Hence |x| ≤ m < m + m2,
and m ≥ 1, so m ∈ S. S has a lower bound, namely 1. Induction gives us a minimum n ∈ S,
so |x| < n2 + n, and also n− 1 /∈ S, so either |x| ≥ (n− 1)2 + (n− 1) = n2 − n, or n− 1 6≥ 1.
If n − 1 6≥ 1, then n = 0 and we also have |x| ≥ 0 = 02 − 0 = n2 − n. Combining, in both
cases we get the desired double inequality n2 − n ≤ |x| < n2 + n.

10. Prove or disprove: ∀x ∈ R ∀k ∈ N, x + k = x +k.

The statement is false, and requires a counterexample. Many are possible, here is just one.

Take x = 1 and k = 10, we see that x = 1 since 12−1 ≤ |x| < 12+1. We also have x + k = 3

since 32 − 3 ≤ |1 + 10| < 32 + 3. However, x + k = 3 6= 11 = x +10 = x +k.


