MATH 245 S25, Exam 2 Solutions

1. Carefully define the following terms: well-ordered by \langle , big O.

We say that a set of numbers S is well-ordered by some order < if every nonempty subset of S has a minimal element in the < ordering. Given two sequences a_n, b_n , we say that a_n is big O of b_n if $\exists M \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, |a_n| \le M |b_n|$.

2. Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive Existence Proof Theorem.

The proof by contradiction theorem says that (for any propositions p, q) to prove $p \to q$, we can prove $p \land \neg q \equiv F$. The nonconstructive existence proof theorem says that (for any domain D and any predicate P(x)) to prove $\exists x \in D, P(x)$ we can prove $\forall x \in D, \neg P(x) \equiv F$.

3. Solve the recurrence that has initial conditions $a_0 = 0$, $a_1 = 2$ and relation $a_n = -2a_{n-1} + 2a_{n-2}$ $(n \ge 2)$.

This recurrence has characteristic polynomial $r^2 + 2r - 2$, which has roots $r_1 = -1 + \sqrt{3}$ and $r_2 = -1 - \sqrt{3}$ (we can use the quadratic formula to find these). Since these are distinct, the general solution is $a_n = Ar_1^n + Br_2^n$. We now apply the initial conditions to get $0 = a_0 = Ar_1^0 + Br_2^0 = A + B$ and $2 = a_1 = Ar_1^1 + Br_2^1 = Ar_1 + Br_2$. Solving the system $\{0 = A + B, 2 = Ar_1 + Br_2\}$ we get $A = \frac{2}{r_1 - r_2} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$ and $B = -A = \frac{-1}{\sqrt{3}}$. This gives specific solution $a_n = \frac{1}{\sqrt{3}}(-1 + \sqrt{3})^n + \frac{-1}{\sqrt{3}}(-1 - \sqrt{3})^n$, which may be simplified if desired as $a_n = \frac{(-1 + \sqrt{3})^n - (-1 - \sqrt{3})^n}{\sqrt{3}}$. CAUTION: $(-1 + \sqrt{3})^n - (-1 - \sqrt{3})^n$ cannot be simplified!

- 4. Let $x \in \mathbb{R}$. Use cases to prove that $||x+1| |x-1|| \le 2$. We split into three cases, based on x. Case $x \ge 1$: |x+1| = x+1 and |x-1| = x-1, so $||x+1| - |x-1|| = |(x+1) - (x-1)| = |2| \le 2$. Case $x \le -1$: Now |x+1| = -(x+1) and |x-1| = -(x-1), so $||x+1| - |x-1|| = |-(x+1) + (x-1)| = |-2| = 2 \le 2$. Case $-1 \le x \le 1$: Now |x+1| = x+1 and |x-1| = -(x-1), so ||x+1| - |x-1|| = |(x+1) + (x-1)| = |2x| = 2|x|. Since $-1 \le x \le 1$ in this case, we have $|x| \le 1$, so $2|x| \le 2$. In all three cases, $||x+1| - |x-1|| \le 2$.
- 5. Prove that for all $n \in \mathbb{N}_0$, we have $F_{n+1}(F_n + F_{n+2}) = \sum_{i=0}^n F_i^2 + F_{i+1}^2$. Here F_n denotes the Fibonacci numbers. Shifted induction (starting with 0). Base case n = 0: $F_n = 0, F_{n+1} = 1, F_{n+2} = 1$ so $F_{n+1}(F_n + F_{n+2}) = 1(0+1) = 1$, while $\sum_{i=0}^n F_i^2 + F_{i+1}^2 = F_n^2 + F_{n+1}^2 = 0^2 + 1^2 = 1$. Inductive case: Let $n \in \mathbb{N}_0$ and assume that $F_{n+1}(F_n + F_{n+2}) = \sum_{i=0}^n F_i^2 + F_{i+1}^2$. We add $F_{n+1}^2 + F_{n+2}^2$ to both sides. The RHS becomes $F_{n+1}^2 + F_{n+2}^2 + \sum_{i=0}^n F_i^2 + F_{i+1}^2 = \sum_{i=0}^{n+1} F_i^2 + F_{i+1}^2$. The LHS becomes $F_{n+1}(F_n + F_{n+2}) + F_{n+1}^2 + F_{n+2}^2 = F_{n+1}(F_n + F_{n+1}) + F_{n+2}(F_{n+1} + F_{n+2}) = F_{n+1}F_{n+2} + F_{n+2}F_{n+3} = F_{n+2}(F_{n+1} + F_{n+3})$. Putting it all together we get $F_{n+2}(F_{n+1} + F_{n+3}) = \sum_{i=0}^{n+1} F_i^2 + F_{i+1}^2$.
- 6. Let $a_n = 3n^2 + 7$. Prove or disprove that $a_n = \Theta(n^3)$.

The statement is false, because $a_n \neq \Omega(n^3)$, which we now need to prove. Let $M \in \mathbb{R}, n_0 \in \mathbb{N}_0$. Choose $n = \max(10\lceil M \rceil + 1, n_0)$. This ensures that $n \in \mathbb{N}_0, n \geq n_0$, and also that $n > 10M \geq M|3 + \frac{7}{n^2}|$. Multiplying by (positive) n^2 we get $n^3 > M|3n^2 + 7|$, so $M|a_n| < |n^3|$. 7. Suppose that an algorithm has runtime specified by recurrence relation $T_n = 5T_{n/2} + n^2$. Determine what, if anything, the Master Theorem tells us. We have a = 5, b = 2, and since $n^2 = \Theta(n^2), k = 2$. We set $d = \log_b a = \log_2 5$, and note that $2 = \log_2 4 < \log_2 5 < \log_2 8 = 3$, so 2 < d < 3. Since k < d, we are in the "small c_n " case of the Master Theorem, which tells us that $a_n = \Theta(n^d) = \Theta(n^{\log_2 5})$.

For problems 8-10, we consider a new function, "surround". For $x \in \mathbb{R}$, we define "the surround of x", writing x, as a natural number satisfying $x^2 - x \le |x| < x^2 + x$.

8. Prove uniqueness, i.e. $\forall x \in \mathbb{R} \mid x \in \mathbb{N}, \ x^2 - x \leq |x| < x^2 + x$. Let $x \in \mathbb{R}$, and suppose $x, y \in \mathbb{N}$ with $x^2 - x \leq |x| < x^2 + x$ and $y^2 - y \leq |x| < y^2 + y$. We recombine to get $x^2 - x < y^2 + y$. Completing the square we get $(x - 0.5)^2 - 0.25 < (y + 0.5)^2 - 0.25$. Adding 0.25 and taking square roots (the positive square root since $x, y \geq 1$) we get x - 0.5 < y + 0.5, so x < y + 1. Applying Theorem 1.12(a) ("a theorem from the book") we get $x \leq y$. We can recombine the other way to get $y^2 - y < x^2 + x$, and similar algebra gets us $y \leq x$. Hence x = y.

NOTE: This problem is about proof structure, not algebra. The green portion of the solution was only worth 1 point. Here is an alternate version of the green portion, found by a student: Rewrite the inequality as $\boxed{x}^2 - \boxed{y}^2 < \boxed{x} + \boxed{y}$, factor as $(\boxed{x} + \boxed{y})(\boxed{x} - \boxed{y}) < \boxed{x} + \boxed{y}$. Now, since $\boxed{x} + \boxed{y} > 0$, we cancel to get $\boxed{x} - \boxed{y} < 1$. By Thm 1.12(a), $\boxed{x} - \boxed{y} \leq 0$, so $\boxed{x} \leq \boxed{y}$. We recombine the other way, and similar algebra gets us $\boxed{y} \leq \boxed{x}$.

9. Prove existence, i.e. $\forall x \in \mathbb{R} \exists x \in \mathbb{N}, x^2 - x \leq |x| < x^2 + x$.

Let $x \in \mathbb{R}$. We use minimum element induction, defining $S = \{m \in \mathbb{Z} : m \ge 1 \land |x| < m^2 + m\} = \{m \in \mathbb{N} : |x| < m^2 + m\}$. It is a bit tricky to prove this is nonempty – we need to find some specific integer in S. One way is taking $m = \lceil |x| \rceil + 1$. Hence $|x| \le m < m + m^2$, and $m \ge 1$, so $m \in S$. S has a lower bound, namely 1. Induction gives us a minimum $n \in S$, so $|x| < n^2 + n$, and also $n - 1 \notin S$, so either $|x| \ge (n - 1)^2 + (n - 1) = n^2 - n$, or $n - 1 \ngeq 1$. If $n - 1 \ge 1$, then n = 0 and we also have $|x| \ge 0 = 0^2 - 0 = n^2 - n$. Combining, in both cases we get the desired double inequality $n^2 - n \le |x| < n^2 + n$.

10. Prove or disprove: $\forall x \in \mathbb{R} \ \forall k \in \mathbb{N}, \ |x+k| = x + k.$

The statement is false, and requires a counterexample. Many are possible, here is just one. Take x = 1 and k = 10, we see that x = 1 since $1^2 - 1 \le |x| < 1^2 + 1$. We also have x + k = 3 since $3^2 - 3 \le |1 + 10| < 3^2 + 3$. However, $x + k = 3 \ne 11 = x + 10 = x + k$.